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Abstract 

During landfalling tropical storms, probabilistic predictions of the storm surge constitute important 

products for guiding emergency response/preparedness decisions. The probabilistic formulation for these 

predictions is established by considering forecast errors for the intensity, size, cross- and along-track 

variability of the National Hurricane Center (NHC) advisories. These errors define ultimately the vector of 

uncertain storm features, with corresponding probability distributions chosen based on historical data. 

Propagation of the uncertainty in these features, serving as input to a numerical model for predicting storm 

surge, provides the desired statistical products, for example, the water level corresponding to a specific 

exceedance probability. This estimation is repeated whenever the NHC updates the storm advisory. Monte 

Carlo (MC) simulation is considered here as the numerical tool for facilitating this uncertainty propagation. 

Specifically, the implementation of adaptive importance sampling (IS) across the storm advisories is 

examined to improve MC computational efficiency, with objectives to attain better accuracy estimates or 

accommodate predictions using a smaller number of storm surge simulations. IS achieves this objective by 

introducing a proposal density (IS density) to choose a storm ensemble with higher contribution to the 

examined probabilistic product(s). In the proposed implementation, storm surge simulation results from the 

current advisory are leveraged to select the IS density to use for the next advisory, establishing an IS 

workflow that involves minimal additional computational burden, since readily available information is 

utilized. The requirement to estimate the storm surge across a large geographic domain, leading to the 

definition of a large number of quantities of interests (QoIs), poses a significant challenge in this case, since 

these quantities typically represent competing IS choices. Different schemes are discussed to establish a 

compromising solution, with emphasis on the use of principal component analysis to reduce the 

computational burden for the IS density selection. Alternative IS formulations are examined, and an 

adaptive selection of the IS characteristics is discussed, utilizing a novel global sensitivity analysis scheme 

and an efficient estimation of the anticipated IS accuracy. In order to guarantee robustness, since the IS 

density is established using limited information (i.e, limited number of simulations) involving a large 

number of QoIs, and, more importantly, it is chosen based on the information of the current advisory but is 
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implemented in the next one, a defensive IS scheme is introduced. Validation considering different 

historical storms demonstrates robustness and improvements in accuracy, accomplished by the proposed 

sharing of information across advisories through an adaptive IS formulation. Extensions to accommodate a 

quasi-Monte Carlo implementation are also discussed.  

Keywords: landfalling storms; storm forecast errors; probabilistic surge estimation; Monte Carlo 

simulation; adaptive importance sampling; high-dimensional output.   

Introduction 
Evacuation and emergency preparedness decisions at regional and national levels during landfalling 

tropical storms rely on estimates of the expected storm surge impact (Taylor and Glahn 2008; Smith et al. 

2011; Chen et al. 2019; Kijewski-Correa et al. 2020). Such estimates can be obtained by using the National 

Hurricane Center’s (NHC) official advisory for the storm current/forecasted track, size and intensity 

characteristics. These characteristics provide the input to an appropriate hydrodynamic numerical model, 

such as the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model (Jelesnianski et al. 1992; 

Glahn et al. 2009) [current selection in the NHC workflow] or the ADvanced CIRrculation Model for 

Shelves, Coastal Seas, and Estuaries (ADCIRC) model (Luettich et al. 1992), to predict the anticipated 

surge for the corresponding storm scenario. To establish well-informed decisions in this setting, 

uncertainties associated with the NHC forecast advisory need to be explicitly accounted for (Hamill et al. 

2012; Resio et al. 2012). Such uncertainties can be quantified through forecast errors for four different 

storm features (Taylor and Glahn 2008): (a) the cross-track variation; (b) the along-track variation (i.e. the 

storm forward translational speed); (c) the storm size, represented by the radius of maximum winds; and 

(d) the storm intensity, represented by the maximum velocity of sustained winds. Through analysis of 

historical data (errors from past forecasts), probability distributions for these forecasted storm features can 

be defined (Gonzalez and Taylor 2018). This ultimately leads to a formal definition of the probabilistic 

storm surge predictions for landfalling storms (Taylor and Glahn 2008; Kyprioti et al. 2021a), established 

by combining the official NHC advisory, representing the nominal track, size, and intensity, with the 

uncertainty description corresponding to the aforementioned four storm features, representing the 

variability of the track, size, and intensity. The predictions of interest correspond to statistical products like 

the storm surge with specific probability of being exceeded, or the probability that the storm surge will 

exceed specific reference thresholds. Mathematically, these can be described through probabilistic integrals 

across the uncertain storm features for different quantities of interest (QoIs) (Kyprioti et al. 2021a), with 

the latter corresponding to the storm surge for different locations within the geographic domain of storm 

impact. Numerically, these products can be obtained by creating an ensemble of storm scenarios based on 

the official NHC advisory and the forecast error probabilistic description, then predicting the storm surge 
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for each of them through a hydrodynamic model as discussed earlier, and finally estimating the desired 

statistics across the ensemble. This estimation is repeated whenever a new advisory becomes available, 

typically every 6 hr, to provide updated statistical products for emergency response/preparedness decisions. 

The National Weather Service (NWS) has created the Probabilistic tropical storm Surge (P-Surge) 

model (Taylor and Glahn 2008; Gonzalez and Taylor 2018) to support the aforementioned uncertainty 

quantification and propagation. The traditional P-Surge formulation uses a factorial sampling for 

establishing statistical predictions, defining a small number of representative values for each storm feature, 

and considering all possible combinations of these values (factorial design) to generate the required storm 

ensemble. The relative weight of each of these storms is obtained based on the relative likelihood of the 

corresponding representative values, utilizing the underlying probability distribution of the forecast errors. 

Recently (Kyprioti et al. 2021a), an alternative implementation was examined for the uncertainty 

propagation in this setting, adopting quasi-Monte Carlo (QMC) through the use of low discrepancy 

sequences (Lemieux 2009) for the numerical integration of the associated probabilistic integrals. It was 

shown in (Kyprioti et al. 2021a) that QMC can improve computational efficiency and provide statistical 

estimates for the surge with the same degree of accuracy as factorial sampling, while using a smaller number 

of storm simulations. Both these approaches though, factorial-sampling or QMC, focus strictly on the 

uncertainty in the input representation, trying to create more appropriate storm ensemble scenarios, either 

through the selection of representative values or through the use of low discrepancy sequences. They do 

not utilize any information regarding the surge output from the different (readily available) simulations to 

improve the uncertainty-propagation efficiency. 

By contrast, this paper establishes a framework for improving the computational efficiency of 

probabilistic surge estimates by explicitly leveraging information about the numerically predicted surge. 

Specifically, it examines a Monte Carlo (MC) simulation for the uncertainty propagation and leverages the 

fact that probabilistic predictions need to be repeated across the different NHC advisories. The objective is 

to use the results from the MC implementation at the current advisory to improve the computational 

efficiency of the MC estimates for the next advisory. This can facilitate adaptive, intelligent decisions for 

the uncertainty propagation with no additional computational burden, established simply by using the 

readily available information for the numerical simulations at each advisory, and sharing information across 

the advisories. The computational statistics tool investigated to establish the desired improvement in the 

computational efficiency is importance sampling (IS) (Robert and Casella 2004; Kroese et al. 2011). IS is 

formulated by introducing a proposal density that focuses the MC sampling on input regions that have larger 

contributions to the integrand of the probabilistic integral under consideration. Through the appropriate 

selection of this proposal density, the variability of the MC estimator can be drastically reduced, creating 

smaller statistical errors in the uncertainty propagation, and therefore delivering the desired computational 
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efficiency (Robert and Casella 2004; Kroese et al. 2011). This selection requires knowledge of the 

simulation output, though, since it relies on knowledge about the entire integrand and not only about the 

probabilistic distribution of the uncertain input. This requirement can be seamlessly accommodated within 

the probabilistic surge estimation by using results from the current advisory to select the IS proposal density 

for the next advisory. 

The novel contributions of this manuscript are: (i) the introduction of the IS formulation across storm 

advisories; and (ii) a number of advances to support an adaptive IS implementation within this setting, to 

maximize the computational benefits. The biggest challenge for this IS implementation is the need to 

establish a single proposal density across all QoIs, which for a typical application (large geographic domain 

of impact, with many locations of interest) corresponds to a high-dimensional output vector. Although IS 

applications have examined in detail implementations to high-dimensional inputs (Au and Beck 2003; Ehre 

et al. 2021), their focus is typically on a single output. Studies that have examined applications to high-

dimensional output problems are very rare. The challenge in such cases originates from the fact that for 

each of these outputs the optimal proposal density will be different (Hesterberg 1988) and, as it will be 

shown later, in probabilistic storm surge estimation these densities are conflicting. For establishing a 

proposal density that offers a balanced compromise across them, different schemes are examined here. 

Emphasis is placed on reducing the numerical burden for this selection even for applications with very 

high-dimensional output (millions of locations of interest where surge needs to be estimated), and an 

approach using principal component analysis (PCA) (Jolliffe 2002) as a dimensionality reduction tool is 

discussed. Moreover, adaptivity is introduced in the IS implementation. Past studies (Au and Beck 1999; 

Medina and Taflanidis 2014) have demonstrated the importance of adaptive IS selection, established by 

examining different candidate IS choices and promoting the one with the best anticipated efficiency. A 

similar scheme is advocated here, leveraging a highly efficient global sensitivity analysis (GSA) that was 

recently established for probabilistic surge estimation applications (Jung et al. 2022), and an efficient 

prediction of the anticipated accuracy of the alternative IS implementations. For the proposal density, 

formulations relying on both marginal and joint distributions across the inputs are discussed as alternative 

options, whereas GSA is used to prioritize the inputs, so that the limited available information can be better 

utilized to choose densities only for the more influential inputs (Schuëller et al. 2004). To establish 

robustness, to accommodate the implementation across the large number of QoIs using limited information 

(limited number of simulations) and, more importantly, the fact that the IS density is chosen based on the 

current advisory but is implemented in the next one, a defensive IS scheme (Hesterberg 1995) is introduced. 

Finally, extensions to couch the IS formulation within a QMC framework are also discussed.  

The remainder of the paper is organized as follows. Section 2 reviews the probabilistic surge estimation 

problem, while Section 3 discusses the basics of the MC and IS formulations. Section 4 presents all details 
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of the IS formulation tailored to the probabilistic surge estimation, including all necessary advances to 

support the high dimensionality of the output and the implementation across advisories. It also presents the 

proposed computational workflow. Section 5 discusses the details for the validation case studies, 

considering different historical storms to demonstrate robustness. Section 6 presents the validation results 

examining three different setups: (i) adaptive IS selection for a single advisory, (ii) IS implementation 

across advisories, and (iii) IS integrated with a QMC scheme.  

 Formulation of probabilistic surge description for landfalling storms   

This section reviews the NWS uncertainty quantification framework (Taylor and Glahn 2008; Gonzalez 

and Taylor 2018) for the formulation of probabilistic surge estimates. A detailed mathematical description 

of the framework was recently discussed in (Kyprioti et al. 2021a). Here this description is revisited, placing 

emphasis on establishing formalisms to accommodate the estimation and sharing of information across 

storm advisories, an issue not addressed in the aforementioned past studies.  

2.1 Storm characterization   

During landfalling storms, NHC provides advisories for the past and the forecasted track, size, and 

intensity characteristics. The track is described by the latitude, slat, and longitude, slon, of the storm center, 

the storm size by the radius of maximum winds, Rmw, and the storm intensity by the maximum sustained 

wind speed, vw, and/or by the pressure difference between the center of the storm and the ambient pressure, 

DP. Information for Rmw might not be readily available, and in such cases it is customary to infer it based 

on the remaining characteristics, using functional approximations (Jelesnianski and Taylor 1973) that relate 

Rmw, vw, and DP, using, additionally, the storm track information. This is the reason for including also 

information about DP in the advisories, to accommodate such an inference for Rmw, if necessary. The NHC 

advisories include information for both the history (prior evolution) of the storm characteristics as well as 

the forecasted storm evolution for the next few days and are updated typically in regular intervals (every 6 

hr). Figure 1 shows an example of two subsequent advisories from superstorm Sandy, one of the historical 

storms that will be used in the case studies examined later in the paper. As also seen in this figure, NHC 

forecasts do not provide information for the future evolution of Rmw or DP, and the standard practice (Taylor 

and Glahn 2008) is to use the current estimate of Rmw for the future forecast definition. The completed NHC 

advisory information for the evolution of the storm track, size, and intensity can be then used by a 

parametric model to provide the evolution of wind and pressure fields over time. These fields can be 

subsequently used as forcing for a storm surge numerical model, such as the SLOSH (currently used by 

NHC) or ADCIRC (alternative option) models discussed in the introduction, to provide predictions for the 

anticipated surge. 
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(a) Hurricane Sandy (2012)‐NHC advisory 22 (b) Hurricane Sandy (2012)‐NHC advisory 23 
and    

Figure 1.  Data  from  NHC advisories 22 [part (a)]  and 23 [part (b)]  for superstorm Sandy,  showing  past  
(indicated with t <0 )  and forecast (indicated with t ³0 )  information  for track and intensity. 

prior storm history and prior storm history 

 

 

To mathematically  formalize this setup, let q  denote the four-dimensional vector of features used to 

describe the size, track, and intensity  of each storm:  

éRmw 
ù

ê ú
ê s ú 

 q = ê lat ú   (1)ê s ú 
ê lon ú
ê v ú
ë w û 

The variation with time of these characteristics will be described using notation q(t) where t denotes time.   

A superscript in parenthesis .(k)  will  be used hereinafter to explicitly denote, when needed, the kth storm 

advisory, provided at time t(k). Let  also t ( )k = -t t ( )k  denote the centered time for the kth advisory  with   

t ( )k < 0  corresponding  to history and t ( )k ³ 0  to forecasts. When appropriate, the superscript  will be  

removed from  t ( )k , using t to denote the temporal aspects for the future storm  evolution characteristics.  

The NHC advisory  combines information for the history{ (q t ( )k ); t  ( )k < 0} of the storm features  as well as 

nominal (median) predictions { (q t ( )k ); t  ( )k ³ 0} for their future evolution (forecast) with notation ~ used  

above the vector q  to denote the nominal predictions. To  simplify  discussions we will use notation { (q  t ( )k )}   
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to describe the kth NHC advisory, with the understanding that for t ( )k < 0  the information corresponds to 

the actual recorded storm evolution (with a deterministic definition of all the associated storm features), 

( )+ ( )-and not to nominal predictions. Also shorthanded notations t k  and t k  are used to describe forecast 

t ( )k t ( )k³ 0  and history < 0 estimates, respectively, for the kth advisory.

 2.2 Uncertainty quantification for storm features  

The uncertainty quantification for calculating the probabilistic surge estimates is established by 

t ( )k +accounting for forecast errors in the nominal advisory forecast { (q )} , considering variations in the 

size, the intensity, and the along and cross position of the storm center relative to the nominal track (Taylor 

and Glahn 2008). The vector characterizing the variability of the storm features for t ³ 0  is defined as:  

é Rmw ( )t ù
ê ú
ês ( )t ú cross q( )t = ê ú (2)êsalong ( )t úê ú
ê úv t( )ë w û 

where R ( )t and v t( )  denote, respectively, the variability (error) in the size and intensity stormmw w 

parameters, while salong ( )t  and scross ( )t  denote, respectively, the along- and cross-track variability of 

the storm. Note that the definition of the variability q(.)  is independent of the advisory, which is the 

reason that is presented as function of t  and not t ( )k . Of course, for combining with the nominal advisory, 

t ( )k t ( )k + t ( )k +eventually q(.) is evaluated for the  values. The combination of { (q )}  and q( )  leads to the 

( )+ ( )+definition of { (q t k )}  for the storm having forecast error q( t k )  with respect to the nominal advisory 

t ( )k + t ( )k -{ (q )} . Combining this information with the history { (q )}  provides the complete information for 

q t ( )k t ( )k +the storm sample scenario { (  )} . For deriving { (q )} , size and intensity are defined directly through 

( )k + ( )k + (k )+ ( )k + (k )+ ( )k +their respective variations, R ( t ) = R ( t ) + R ( t ) , v ( t ) = v t ( ) + v t( ) ,mw mw mw w w w 

( )k + ( )k +while for the storm track, the combination of salong ( t )  and scross ( t )  jointly influences the updated 

( )k + ( )k +storm track slat(t) and slon(t) in the following way: the nominal track {slat ( t ),  slon ( t )} is varied by 

( )k +s ( t ) perpendicular to its bearing to obtain a cross-path modified track; then each point of that cross 

( )k +modified track is varied along the track by salong ( t ) to obtain the final track. The latter variation 

maintains the bearing of the cross-modified track but changes the translational speed. Figure 2 demonstrates 

an example, showing different storm tracks that originate from the cross-track variability of the nominal 

track advisory shown in part (a) of Figure 1. 
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Track forecast 

Sample tracks 
based on cross 
track error 

Figure 2. Storm tracks obtained considering cross-track variability of the nominal track forecast shown in part 
(a) of Figure 1. 

The probabilistic description for Δq(t) is based on a statistical analysis of past forecast errors. The 

current NWS formulation is to assume: (i) independence between the four forecast errors for storm features, 

since they represent fundamentally different storm characteristics; and (ii) perfect correlation across times 

(Taylor and Glahn 2008). Note that the perfect correlation in time means that if, for example, the v t( )w 

value is larger by one standard deviation than its nominal value at t = 24 hr , it will still be larger by one 

standard deviation than its median value at t = 48 hr . Of course, the latter standard deviation, describing 

the magnitude of the variability, will change at different times, and become larger (larger forecast error) as 

t  increases. These assumptions simplify the uncertainty description, requiring a four-dimensional vector 

nxto represent the random variables. This vector is denoted by x Î   (nx=4) herein and the probabilistic 

description of its independent components, {x i; =1,...,4}  is discussed next.i 

Following (Taylor and Glahn 2008) a Gaussian probability distribution is assumed for salong ( )t , 

s ( )t  and v t( )  leading to (Kyprioti et al. 2021a): cross w 

q t( ) = σ ( t x) ; i=2,...,4 (3)i i i 
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where xi’s are independent standard Gaussian random  variables with σi ( )t  corresponding to  their standard 

deviation. This standard deviation represents the scaling parameter that dictates the size of the forecast error  

at different times and is selected based on the 5-year mean absolute error statistics, ei ( )t ,  as: 

 σi ( )t = ei ( t ) / a;  i=2,...,4   (4) 

with a  taken as 0.7979 (Gonzalez and Taylor 2018).  Part (b) of Figure  3  shows examples for ei ( )t  based 

on the  2012 NHC forecast errors  for hurricanes, corresponding to one of the years examined  in the case  

studies later. It is evident that as t  increases, the errors associated with the NHC forecast become larger.  

For the size parameter Rmw ( )t , the established probabilistic description (Taylor and Glahn 2008)   

corresponds to a discrete random  variable representation, with  three possible values representing small, 

medium, and large size storms, assigned to the 15th, 50th,  and  85th  percentiles for the storm  size error 

conditional on the nominal storm  size R mw ( )t . Equivalently  (Kyprioti et al. 2021a), these define three 

possible values {R ( )r ( t  R mw ) | mw ( t );  r =-1,0,1}, with probability  masses 0.3 (for r=-1), 0.4 (for r=0) and

0.3 (for r=1) linked to the 15th percentile, 50th percentile and 85th percentile storm  size errors, respectively.  

This uncertainty  description is shown in part (a) of  Figure 3. To  unify  the  uncertainty  characterization across  

all storm  features, a transformation to the standard Gaussian space is also adopted for the  probabilistic 

description of  ΔRmw. This leads ultimately to the relationship: 

ïì   ( 1- )   -1

ï R 
ï mw ( )t | R mw ( t )  if  x 1 <Φ (0.3)

 R ( ï  t ) = R (0) ( t ) | R  í ( t )  if Φ -1 (0.3) £ x £Φ -1
mw mw mw 1 (0.7)   (5)

ïï ï R (1) R îï mw ( )t |  -1

 mw ( t )  if  x 1 >Φ (0.7)

where x1  is a standard Gaussian variable and  Φ(.) denotes the standard Gaussian cumulative distribution 

function.   

Figure 3.  Uncertainty  description as a function of time for  the storm characteristics: (a) the 15th, 50th and 85th 
percentiles for the radius of maximum  winds for different nominal radius  values; (b) 5-year mean absolute error for 

the cross-, along-track  variation and  the wind  speed, for the 2012 NHC forecast error description. 
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2.3 Probabilistic surge estimates    

The uncertainty description is ultimately facilitated through the four-dimensional random variable 

vector x, with components {x i; =1,...,4}  following (independent) standard Gaussian distributions. i 

Knowledge of x provides q( t ( )k + )  through Eqs. (3) and (5) which, as explained in Sections 2.1 and 2.2, 

t ( )k + t ( )k -can be combined with the nominal forecasts { (q )}  and the storm history { (q )}  to define the input, 

{ (  )}, to a hydrodynamic numerical model to predict the surge across the geographic domain the storm q t 

impacts. We are interested in the statistics of the peak surge across nz discretized locations within this 

domain, with nz corresponding to a large number in typical applications. Notation zj will be used to denote 

this surge at location j and notation z j ( |x q ( )k )  to explicitly denote its dependence on the deviation x from 

( )k ( )the nominal storm predictions for the kth advisory q = { (q t k )}  . Mathematical formalism “|” is used 

herein to denote conditional relationships. Note that in an effort to simplify the notation, the temporal 

dependence has been removed in the q ( )k  description. 

To support emergency response decisions, different statistics of interest for the peak storm surge can 

be estimated within this uncertainty quantification setting (Hamill et al. 2012; Gonzalez and Taylor 2018), 

with the most popular one being the probability that the surge will exceed a specific threshold b. Using the 

total probability theorem, this probability for the kth advisory and jth location is expressed as: 

( )k ( )kPj ( )b = I[z j (x q|  ) > b]p( )x dx (6)ò 
where I[.] corresponds to the indicator function, which is one if the quantity inside the brackets is satisfied, 

else it is zero, and p(x) corresponds to the probability distribution model of x (standard Gaussian as detailed 

earlier). The inverse problem can provide another interesting statistical quantity, the surge corresponding 

to a specific probability pt of exceedance, which for the kth advisory is given by: 

( )k p  ( )k ( )k pt tbj  such that Pj (bj ) = pt (7) 

To generalize discussions so that different probabilistic surge estimates can be easily accommodated, 

let hj ( |x q ( )k )  denote the consequence measure associated with the statistics of interest, and  

( )k ( )k ( )kH j = Ep [hj (x q|  )]  =ò hj (x q|  ) p( )x dx (8) 

the probabilistic integral defining these statistics, where Ep[.] represents expectation under probability 

( )k (k )model p(x). For example, for the probability of exceedance given by Eq. (6) hj ( |x q ) = I[z j ( |x q ) > b] 

( )k ( )k , whereas for the expected (mean) surge hj ( |x q ) = z j (x q|  ) . The objective of the uncertainty 

propagation, which is the focus of the remainder of this paper, is the efficient estimation of the four-
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dimensional integral of Eq. (8). This will be accomplished using MC  simulation tools. Readers interested  

in the estimation of this integral through  factorial sampling or QMC techniques are referred to (Kyprioti et 

al. 2021a).  

3   Monte Carlo and importance sampling fundamentals 

The MC estimator for the integral of Eq. (8) is formulated by  considering a set {xl : l = 1,..., N}  of N  

independent identically  distributed (i.i.d)  samples for x   from  a proposal density  f ( )k ( )x , with xl  denoting  

the lth sample. In the context of the  probabilistic surge estimation, the set {xl : l = 1,..., N}  represents the  

ensemble of N  storms utilized to estimate the  desired statistical products. Note that a dependence of the 

proposal density  on (k)  is used herein, since that density can change across advisories.  Using the N i.i.d 

samples, x l ~ f ( )k (x) , with ~  representing distribution proportional to, the MC estimator, for the  kth 

advisory and jth QoI, denoted Ĥ ( )k
j , is obtained as (Robert and Casella 2004; Kroese et al. 2011): 

( )k ( )k 1 N
l ( )k p(xˆ  l )

 H j ( f ) = åh  
N j (x q|  ) 

( )k l   (9) 
l=1 f ( )x 

where the dependence of the  estimator on the  proposal density  selection is explicitly  denoted using notation 

Ĥ ( )k ( ( )k 
j f ) . Provided that the expression h ( |x q  ( )k 

j  ) p ( x ) / f  ( )k (x)  is  bounded, meaning that the support  of  

f ( )k ( )x  is greater than the support   of  the integrand h ( |x q ( )k ) p(x ) , the  estimator Ĥ ( )k
j j ( )f  is unbiased, 

with  coefficient of variation, δ( )k 
j , representing its  statistical accuracy as an approximation of H ( )k

j , given  

by (Robert and Casella 2004; Kroese et al. 2011):  

1 Var [ (hj x q| ( )k 

f ( )k  ) p ( x ) / f  (k ) (x )]  
 δ( )k 

j ( )f = 
N H ( )k   (10) 

j 

where Var ( )k [.] 
f 

  denotes variance under the probability  model f ( )k ( )x .

The simplest choice for the proposal density  is to use f ( )k ( )x = p(x) , which corresponds to a direct 

MC estimation. In  MC with IS, the density  f ( )k ( )x , termed IS density  in this  case, is chosen so that the MC 

sampling concentrates in regions of the input x that correspond to larger values (i.e. with higher  importance) 

for the integrand h  ( )k ( )k
j ( |x q ) p(x)  that is associated with H j (Robert and Casella 2004; Kroese et al. 2011).  

The IS objective is to reduce the variance appearing in the numerator of Eq. (10), and therefore improve 

the accuracy  of the estimator Ĥ ( )k 
j ( f ( )k ) . As also evident from  Eq. (10) the variance of the estimator 

Ĥ ( )k 
j ( f ( )k )  is Var x q( )k 

( )k [ (hj |   ) p ( x ) / f  ( k )  
f 

(x )] / N , implying that the improvement in accuracy  can be 
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achieved either by an increase in the number of simulations N, which entails an increase in the 

( )k ( )kVar [ ( |  p ( )]  throughcomputational effort, or by a decrease of the variance ( )k hj x q ) ( ) /x f x an
f 

appropriate selection of f ( )k ( )x . IS attempts to achieve this improvement through the latter venue, selecting 

k ( )k ( )kf ( )  ( )  minimize Var
f 

hj x q  ) p( ) /x f ( )]x IS thisx  to [ ( |   . The optimal density, establishing( )k 

minimization, is (Kroese et al. 2011): 

| (h x q|  ( )k ) | p(x)* (k ) j (k )f ( |x q ) = µ| h ( |x q ) | p(x) (11)j 

ò | (hj x q|  ( )k ) | p(x)dx 
j 

where µ  denotes proportionality, and the chosen notation for the optimal density is intended to stress that 

it is a function of both the nominal NHC advisory [dependence on q ( )k ] and the location [dependence on 

j]. Note that the benefits from the IS implementation will be greater when the statistics examined correspond 

* (k )to infrequent events, leading to larger differences between p(x) and f j ( |x q )  (Robert and Casella 2004; 

Kroese et al. 2011). 

Using directly the optimal density of Eq. (11) within the IS scheme is impractical since it requires the 

knowledge of the entire integrand. Sample-based approximations of this optimal density will be examined 

instead. Such approximations have been shown to be highly efficient for selecting IS densities in other types 

of applications (Au and Beck 1999; Medina and Taflanidis 2014). The sample-based IS is formulated, as 

detailed in Section 4.1, by fitting a probability density function to samples distributed proportionally to the 

optimal density of Eq. (11). 

A key component in establishing improved accuracy when utilizing such sample-based approximations 

for the IS density is some form of adaptive selection, established by examining different candidate choices 

f c ( )x  for the IS density and promoting the most appropriate one (Medina and Taflanidis 2014). This 

requires an estimation of the anticipated MC accuracy if f c ( )x were used as proposal density. To achieve 

this objective using the readily available simulations, which were performed using f ( )k ( )x  as the sampling 

density, the approximated variance is first expressed as: 

2é 
( )k p( )  ù éæ 

( )k p( )x ö ù 
( )k 2x

Var
f 
êhj ( |x q ) 

c 
ú = E

f c ê
êççhj (x q|  ) 

c 
÷÷ úú -(H j ) (12)c ê f ( )x úû ë

çè f ( )x ÷ úûë ê ø 

Then, the second moment appearing in Eq. (12), the only component that depends on f c ( )x , can be 

l ( )kcalculated using MC with the sample set {x : l = 1,..., N} ~ f (x)  as (Medina and Taflanidis 2014): 
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éæ  2 ùx  p  2 
 ö æêç ( ) p(x) ö 

E
f c êçhj ( |x q ( )k ) ÷ ú  ÷ = ççh (x q|  (k ) ) ÷ ÷ f c (x )dx

ççêè 
c úf ( )x ÷÷ ç ÷ çø ò

ú è j f c ( )x ø÷ë û 

( p( )x p( )x 
                                         = ò hj (x q| 

2
 ( )k ))  (k )

c ( )
)

f ( )x k
f (x dx   (13) 

f ( )x 

1 N p(x l ) p(x l )
                                         » å(h (x ql | 

2
 ( )  

 k 
j ))

N ( )x f  ( )k
l=1 f c l ( )x l 

The minimization of the variance Var c [ (hj x q| ( ) 
f 

 k ) p( x ) / f c ( x )] , which is the IS objective, corresponds

ultimately  to the minimization of the second moment E c [( j (x q| ( )k ) 
f 

h  p( x ) / f c ( x)) 2 ]  that can be 

approximated  through Eq. (13). This will be leveraged in the developments discussed in the next section. 

Beyond  the mathematical description it  is important to stress that based on the coefficient of variation  

of Eq. (10), the reduction of the IS estimator variance of Eq. (12) leads to a  proportional reduction of  

computational effort to establish the same statistical  error. As such  this  variance should  be  interpreted as 

being directly  proportional to the MC-based computational burden, or, equivalently,  to the achieved 

convergence rate as N  increases. This feature is essential for assessing the improvements established  

through the proposed adaptive IS implementation. 

4  Adaptive IS formulation for probabilistic surge estimation   
The implementation of the sample-based IS formulation discussed  in Section 3  couched within the 

probabilistic surge estimation has the following three challenges:  (i) the necessity  to choose the sample-

based proposal densities using limited information since the number  of  simulations  N is typically  small  

(Kyprioti et  al. 2021a) due  to  the large computational burden of  the numerical models used to  predict the 

storm  surge; (ii) the need to establish a compromise across conflicting outputs with each of them  leading 

to a  different optimal density  [dependence of optimal density of Eq.  (11) on j];  (iii) the requirement to share 

information across the storm  advisories, basing the selection of the proposal density  for the next advisory 

on the responses available for the current advisory, which correspond to different nominal track  

characteristics [dependence of optimal  density  of Eq. (11) on (k)]. In Sections 4.1-4.3, each of these  

challenges is separately  discussed, with the overall computational framework presented in Section 4.4.  

The framework is established by choosing IS  densities utilizing  the  storm  surge simulations from  the 

current (k) advisory, with  the intension  to use these simulations for the next  (k+1) advisory. This means that  

simulations {hj (x ql |  ( )k ) : l =1,..., N}  for the current advisory  obtained using  sample set 

{x l : l = 1,..., N} ~ f ( )k (x)  are readily  available to support the IS selection. Note that for the first advisory  

f (1) ( )x = p( )x  since no adaptive IS selection has been yet established. We will denote as 

φ( )x = p(x) / f ( )k (x)  the  ratio  of  p(x) to  the proposal density  used at the current advisory. Let also 
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H ( )k Î  N ńz  and X Î N n  ´ x  denote the observation and input  matrices defined through this information,  

with the lth row of each matrix corresponding, respectively,  to the  output (across all surge locations) and 

input for the lth simulation.  Also let {r jj : =1,...,n z } denote user-defined priority weights assigned to each 

QoI, dictating the relative importance of establishing higher statistical accuracy  for each QoI. These weights  

will be utilized when aggregating information across the QoIs. The vector of priority  weights will be 

denoted as r Î  nz .  

4.1 Sample-based approximation of the optimal density 

Let π(x) denote the target density  we want to approximate. This density may  correspond directly to the 

optimal IS density f * k )
j ( |x q ( )  given by  Eq. (11), though different options will be discussed in Section 4.2.  

The readily available samples {x l : l = 1,..., N} ~ f ( )k (x) ,  provide information for π(x)  if a weight  

w( )x =  π( )x / f  ( )k (x)  is attached to each of them (Kroese et  al. 2011). Let { w l  l : = 1,..., N}  denote the 

weight-set across the sample set, with w l = w( )xl .  U tilizing the sample/weight pair  {( x l , w l ) : l = 1,..., N}  

the sample-based approximation for π(x) can be established by  fitting some  distribution. Two different 

approaches can be employed for this task: (i) resampling first the weighed set to obtain samples for π(x) 

with no weights, and then establishing a distribution fit for these samples or; (ii) using directly  the weighted  

samples for the fit, with the weights representing the relative  likelihood  of  each sample. In all examples 

considered in this manuscript, the latter implementation is adopted, since it was found to accommodate 

higher robustness. 

With respect to the type of distribution,  either non-parametric  or parametric approximations can be 

considered in this setting (Silverman 1998). Non-parametric densities, such as kernel approximations, will 

face challenges since the number N  of available samples will be  generally  small. For this purpose, 

parametric  densities are promoted here. Specifically, a Gaussian Mixture Model (GMM) formulation 

(McNicholas and Murphy  2008) is chosen, an approach shown in previous studies (Kurtz and Song 2013;  

Geyer et al. 2019) to  be highly  appropriate for sample-based IS  approximations. The GMM fit is established 

using maximum  likelihood estimation, implemented through  the Expectation-Maximization (EM) 

algorithm  (Moon 1996;  McNicholas and Murphy  2008), whereas the weights for the samples 

{w ll : = 1,..., N}  are accommodated using the likelihood adjustments outlined in (Geyer et al. 2019). 

Interested readers can find numerical implementation details for the EM algorithm  in the latter study.  

To improve the robustness of the distribution  fit,  both marginal and joint density formulations are  

examined, and, additionally, the consideration of IS densities only  for the most influential input components 

is considered. The motivation for  examining these alternative options is the same: address the fact that 

limited information is available (small number of samples N) for the IS density selection. It has been shown 
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in a number of studies (Schuëller et al. 2004; Medina and Taflanidis 2014; Jia et al. 2017), that the 

formulation of sample-based proposal densities has the potential to lead to overfitting in such settings, when 

the number of available samples to describe the densities is small. The prioritization of input components 

or the use of marginal densities promotes the extraction of a smaller amount of information from the 

available sample set, something that can accommodate greater robustness in the IS selection. At the same 

time, such choices may reduce the IS efficiency. For this reason, different candidate IS formulations are 

established, then the efficiency for each of them is approximated using Eq. (13), and the most appropriate 

one is chosen. For the input prioritization, an efficient, recently proposed GSA (Jung et al. 2022) is 

l l ( )k lleveraged. Utilizing matrices H(k) and X along with vector r  and set { (φ x ) = p(x ) / f (x ) : l = 1,..., N} 

this GSA implementation provides aggregated importance indicators for the first-order sensitivity indices 

for input x, quantifying the importance of each xi towards the observed surge variability. Note that these 

indicators are established across all QoIs, and ultimately represent the proportion of the total variance 

explained by the variations in each xi. The IS formulation can then focus on only the important components. 

If xs denotes the important input components and x~s the remaining ones, then the candidate IS density is 

f c x c ) ( f x( )  = f (x p x ) and entails a choice of only c ( )  for the lower dimensional xs, since for the s ~ s s 

remaining input components the original distribution p(x~s )  is utilized [no IS formulation]. The selection 

of f c ( )xs  can be established for the entire vector xs (joint formulation) or independently for each of its 

components (marginal formulation). The terms ISM (marginal) and IST (joint) will be used herein to 

distinguish these two implementations. The algorithmic implementation of these concepts will be presented 

in detail in Section 4.4, after additional details for the IS formulation are discussed.    

4.2 Selection of IS densities across conflicting outputs 
* (k )As mentioned earlier, each of the examined outputs (QoIs) has a different optimal density, f j ( |x q ) 

, and these densities can be conflicting with one another. Figures 4 and 5 illustrate this challenge, showing 

* (k )the mean for f x( |  q ) for each of the forecast errors looking at two different advisories of superstorm j i 

Sandy (Figure 4) and hurricane Gustav (Figure 5). Should be noted that this mean is of great importance 

for the IS selection as it dictates the shift of the proposal density towards the peak of the probabilistic 

integrand. The probabilistic estimation in both these figures pertains to the 10% exceedance probability 

( )k ( ( )10%k *  (k )P b ) . It is evident from the results that even with respect to simple statistics (mean) of f x( |  q )j j j i 

, let alone the distributions themselves, great variability exists within the geographic domain of storm 

impact, indicating that the different QoIs represent conflicting decisions. For example, note that some QoIs 

move the original zero mean Gaussian distribution towards positive values while others towards negative 

values. These conflicts are expected to reduce, unfortunately, the overall IS efficiency, since a 
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compromising IS density will need to be implemented, which can be quite different from the actual optimal 

density for each output. Moreover, the selection of this density that balances the conflicting objectives needs 

to be carefully executed, while also accommodating applications with a large number of outputs. Two 

different formulations are examined to satisfy these requirements. 

Figure 4. Distribution of mean of the forecast error optimal IS density corresponding to 10% exceedance probability 
statistics for advisories 22 and 28 of superstorm Sandy. 

Figure 5. Distribution of mean of the forecast error optimal IS density corresponding to 10% exceedance probability 
statistics for advisories 26 and 29 of hurricane Gustav.   
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The first formulation utilizes PCA as a dimensionality  reduction technique. PCA identifies a low-

dimensional vector of latent outputs, also called principal component vector, that best explains the 

variability  of  the original  data H(k)  (Jolliffe 2002).  Each principal component { ;yv v= ¼1, ,n v}  has an 

associated importance λv, representing the variance of the data explained by the  component. To incorporate  

the priority  weights rj for each output and the fact that each observation is associated with weight  

{φ (xl );l =1,..., N},  a  weighted (generalized) PCA is implemented (Greenacre 1984;  Jolliffe 2002),  with 

details reviewed in Appendix A. Note that the incorporation of the observation weights {φ  (xl );l =1,..., N}  

leads ultimately to a  PCA that examines the variance of the observations under probability  model p(x), 

instead under the proposal density  f ( )k ( )x  [if these weights were not used], maintaining a focus on the 

original integrand. As  detailed in Appendix A, this incorporation leads to adjustment of observations by 

φ( ) x l . To accommodate the dimensionality  reduction, only  the more important components are retained, 

with the exact number chosen so that  these retained components explain a significant portion of  the original 

output variance (say over 99%). This process leads to values of  nv in the range of  20-50 for the application 

of interest, as will be discussed in the case study  examples. The output matrix for the principal components 

for the N available simulations is denoted by  Y ( )k ÎN n´ v  and can be obtained through the implementation  

discussed in Appendix A. For the yv component, the responses across the simulations { (y v xl );l = ¼1,  , N }  

are given by the vth column of matrix  Y ( )k . The optimal IS density for each component is taken to 

correspond to the integrand representing its expected value under probability  model p(x), leading to:     

y l

 f * k )
v ( |x Hl (

(x )
 ) µ v

 p(xl )   (14) 
φ( )x l

where the division by φ ( )x l  incorporates the fact that the generalized PCA implementation introduced,  

equivalently, such weights for each observation, and that these  weights need now to  be balanced out to 

obtain the proportionality  to the intended integrand.  Note that  the dependence of the IS density  on H ( )k  

[impacting the entire PCA implementation]  is explicitly noted. Each  of  the nv densities given by  Eq. (14) 

represents a  different target density  πv(x) that can be approximated through the sample-based approach  

discussed in Section 4.1 (algorithmic details discussed later in Section 4.4). Subscript v is used herein to 

distinguish the target density  defined for  each principal component. Since the number of such densities is 

small (value of nv is small), a separate fitting to each of these densities can be examined, leading to an  

approximation f̂  *
v ( |x H(k ) )  for each. The final candidate IS density  is obtained by  a  weighted sum  of the 

individualized IS densities for each principal component (Hesterberg 1988), with weights corresponding  to 

λv. Since the latter weights  represent the variance of the principal components, and the IS  objective is to  
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reduce the MC variability  which is connected to the  output variance, selecting them  as weights is the 

recommended choice. Principal components with larger variance should have proportionally  increased 

importance in guiding  the  IS selection. Note that  the priority weights, rj  for each output have been  

incorporated in the PCA, and therefore influence the eigenvalues λv.  This leads to  the following candidate 

density definition:  

å 
nv ˆ * (k )

c 
)

 f x H( )k
λ f ( |x H  

( |  ) = v=1 v v

n v
  (15) 

å v=1 
λv

An alternative approach can  be accommodated if the averaging across the principal components densities 

is established based on the actual optimal densities, and not their approximations. This leads to target IS  

density:   

n v  * (k  ) l

 f * ( |x H( nk ) å  
y

)= =
λv v  f ( |x H )

µå v λ
v ( )

   v 1
x 

PCA  p( )x   (16) 
å 

nv

v=1 
λ v=1 v

v φ(x l )

representing the target density  π(x). This density  can be then directly  approximated through the sample-

based implementation discussed in Section 4.1. The two alternative PCA-based, formulations will be 

distinguished  using notation PCAin-IS  for  the approach  using  sample-based approximation to  the  IS density  

of each individual component, having candidate IS density given by  Eq. (15),  and notation  PCA-IS for the  

approach using  sample-based approximation to  the weighted density  across the components, with candidate  

density given by  the sample-based  approximation for the target density in  Eq.  (16). PCA-IS entails a smaller  

computational burden,  since it involves  only one GMM-fit, though PCAin-IS  represents a selection with  

greater versatility  (since the approximation is implemented for  individual components), and therefore 

greater potential IS efficiency.  

The second formulation for accommodating the selection of proposal densities across the conflicting 

outputs does not include any  dimensionality  reduction step. In this case, establishing IS densities for each  

of the  outputs and then combining them, an approach similar to the PCAin-IS  formulation, is impractical,  

since the number nz  of such densities will be prohibitively  large. Instead, the individual densities given by 

Eq. (11)  are first combined to define the target IS density:  

å 
nz r γ f * ( |x q (k )  

 f * ( |x q (k ) ) = j=1 j j j ) nz (k )

å 
n 

µ
z

å 
r j=1

r
γ

j jγ hj (x q|  ) p(x)   (17) 

j=1 j j

where γj  corresponds to the additional weights provided for each density,  beyond the priority weights 

associated with each QoI. Similar to the PCA formulation, the weights γj  are chosen equal to  the variance 

of each of the outputs, since the objective of the IS is the minimization of the MC variability, which is  
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connected to the output variance as explained earlier. This indicates that outputs with larger variance should 

have proportionally increased importance in guiding the IS selection, which is what the formulation of Eq. 

(17) with weights corresponding to the output variance accommodates. The priority weights rj incorporate, 

additionally the relative importance of reducing the estimator variance for each QoI. The definition of the 

weights γj, as well as their estimation using the readily available samples, is: 

γ j =Varp [ (j |  ( )kh x q  )] 

N l N l (18) 
» 

1 å(hj (x ql |  ( )k ))2 p 
( )k 

(x ) 
l 
-
æçç 

1 åhj (x ql |  ( )k ) 
p 
(k 

(
) 

x ) 
l 

ö÷÷ 
2 

f ( )x çN f ( )ø÷N l=1 è l=1 x 

The use of Eq. (18) in Eq. (17) completely defines the IS target density π(x) which can be then approximated 

through the sample-based implementation discussed in Section 4.1. This formulation denoted as OrO-IS 

(original output IS) resembles the PCA-IS implementation, though in this case there is no requirement to 

transform to the latent output space to establish the combination of densities. In this context, the distinction 

is that Eq. (17) [OrO-IS] establishes the combination with respect to the original output of interest, whereas 

Eq. (16) [PCA-IS] with respect to the latent output. 

One final topic that needs to be examined is the assessment of the proposal density efficiency across 

the different outputs. For a specific output, this efficiency is characterized by the variance of Eq. (12) which 

can be approximated using the result of Eq. (13). For multiple outputs, the weighted average should be used 

instead. Utilizing a normalization with respect to the weighted average MC estimator variability (without 

IS) the following efficiency measure is defined for the kth advisory: 

nz1 é 
( )k p( )x ù 

r Var  êh ( |x q ) ú 
cå j j c 

( )k c nz j=1 
f 
ëê f ( )x ûú F [ ( )]f x = -1 

n 
(19)

z1 ( )kr Var  [ (h x q|  )]å j p jnz j=1 

This efficiency represents the reduction of computational effort accommodated by the proposal density 

f c ( )x for establishing the same average statistical accuracy (same average variance) across the outputs as 

the direct MC estimation. For example, value 0.1 means that computational effort can be reduced by 10% 

while maintaining the same statistical accuracy. Positive values represent reduction of computational cost 

(improvement), while negative values represent increase of computational cost. 

For accommodating the desired adaptive IS implementation, an MC-estimate of this measure using the 

l ( )kreadily available samples {x : l =1,..., N} ~ f (x) , can be established. This estimate, termed herein as 

efficiency approximation, is: 
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( )k c ú 
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n é  1å
z  å

N æ ö2 ù1 êrj ê (
l

2 l ( )k ) p(x ) ç 1 (xl )
hj ( |x q )  ( )k -ç

 l  çç  
å

N

h (x ql  
|  ( )k p  

) ÷ ú÷÷ ú n z j=1 êN l=1 f ( )x èN j f (k ) ( )xl 
= øë l 1 

÷ úû 

Note that both the efficiency  definition of Eq. (19) and its approximation given by  Eq.  (20) can  be provided 

for any  desired proposal  density  selection f c ( )x , something explicitly  denoted in their functional 

dependence notation.  

4.3 Robustness of IS densities across advisories  

The last issue that needs to be addressed is the fact that the selection of proposal densities is based on  

the current, kth advisory, as evident by  the dependence on q ( )k  or H(k)  of the target densities presented in 

Section 4.2, but is employed  in the next (k+1)th advisory  which might correspond  to different nominal track 

characteristics q (k +1) . Loss of efficiency,  but most importantly  loss of robustness, may arise if the promoted  

IS density  does not sufficiently  cover the important regions (for efficiency) or support (for robustness) of 

the updated  integrand h (k +1)
j ( |x q ) p(x) . Robustness is a  bigger concern here, since if the support of 

h (k+1
j ( |x q ) ) p(x)   is not a subset of the support of the promoted IS density, the IS estimator will be biased  

(Robert and Casella 2004;  Kroese et al. 2011).  A  defensive IS formulation (Hesterberg 1995) is adopted to  

improve robustness. If f c 
IS ( )x  denotes the IS density approximation formulated based on any of the 

approaches outlined in  Section 4.2, then the defensive IS, f c
DIS ( |x α) , is obtained as a  combination of 

f c 
IS ( )x  and p(x): 

 f c c 
DIS ( |x α) = αf IS (x) + (1-α) p(x)   (21) 

with 0 £ £α 1  representing  the defensive IS weight. The selection of  Eq.  (21)  as IS density  guarantees that

the support of h ( |x q (k +1) ) p(x)  is f the support of f c
j a subset o DIS ( |x α)  [or, equivalently, that the quotient 

hj ( |x q (k +1) ) p( x ) / f c
DIS (x)  is bounded], and therefore guarantees unbiased MC predictions.  

The choice of α  needs to be established with care, since small values of α  can lead to a significant 

reduction in IS efficiency, with the defensive IS density f c
DIS ( )x  deviating significantly  from  the promoted  

IS density  f c 
IS ( )x . An adaptive selection is suggested here for α  by  comparing the (reduced) efficiency 

F ˆ ( )k ( f c )  of f c 
DIS DIS ( )x  to the  (optimal) efficiency  F ˆ ( )k ( f c )  of f c 

IS IS ( )x  [both approximated through Eq.

(20)],  and selecting an appropriate defensive weight α  so that the resulting reduction for F ˆ ( )k ( f c
DIS )  when 
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compared to  F ˆ ( )k ( f c
IS )  is less than some threshold ρ. This choice corresponds to the greater robustness that 

can be infused based on the tolerance for reduction of IS efficiency.  

Note that this defensive IS scheme  enhances robustness not only  for  the sharing information across the 

storm  advisories, but additionally  for accommodating decisions using small sample  sets across a large  

number of QoIs. This provides an additional safeguard beyond the ones discussed in Sections 4.1 and 4.2  

to support  the  IS formulations when  using sample-based approximations with a  limited number of samples 

while trying to balance across conflicting QoIs. Due to  the aforementioned characteristics the defensive IS, 

f c 
DIS ( |x α) , given  by  Eq.  (21)  might outperform  the original IS f c 

IS ( )x  for some α  values. For this reason, a  

further improvement of the optimal IS is first established, selecting α  to maximize the efficiency  

approximation given by  Eq. (20):  

 α * = arg max F̂ (k ) [ f c
DIS (x | α)]   (22)  

αÎ[0,1] 

Identification through Eq. (22) of α*=1 means  that f c 
IS ( )x  outperforms any  defensive IS scheme, whereas 

identification of α*<1  means that there is a defensive density that  outperforms, on  average, the sample-

based approximation of the optimal IS density identified earlier. The f c *
DIS ( |x α )  is ultimately  the promoted 

optimal IS, and  then a further decrease in  α  is considered to provide further robustness within the defensive 

IS scheme, as discussed in the previous paragraph.  

4.4 Workflow for the IS density formulation   

Combining the concepts discussed in Sections 4.1-4.3,  the  IS workflow for the probabilistic storm  surge  

estimation during landfalling storms  is established. Note that different variants exist for this workflow,  

depending on: (i) whether sample-based approximations are established for the marginal (ISM) or joint (IST) 

distributions; and (ii)  what target density selection (PCAin-IS,  PCA-IS, or  OrO-IS) is made for 

accommodating the high-dimensional output. Below the detailed workflow for  the PCAin-IS  considering 

both ISM  and IST  formulations is presented first, with the differences in  certain steps for accommodating the 

other variants discussed later on. At the kth advisory, the steps for the adaptive IS selection are the 

following. 

   

Step 1  [priority ranking]:  Using the matrices H(k)  and X along with the priority vector r and the set   

{φ (x l ) = p(x l ) / f ( )k (x l ) : l = 1,..., N} , estimate the  aggregated first-order importance indicators for  x 

following the  implementation described in detail in (Jung et al. 2022). This provides a ranking  of the 

four input components xi  based on their importance. This step can be skipped, and a  generic importance 
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ranking can be used instead, since as shown in (Jung et al. 2022), x2 has always the highest importance, 

with x1 and x4 following with similar importance, and x3 having typically the lowest importance. 

Step 2 [dimensionality reduction]: Perform PCA for matrix H(k) with priority output weights r and 

l l ( )k lsample weights { (φ x ) = p(x ) / f (x ) : l = 1,..., N} , and retain nv components so that the explained 

variance of Eq. (A.1) is greater than a threshold ψo. Obtain the matrix of latent responses Y(k) (details 

in Appendix A) and eigenvalues λv. 

Step 3 [target density definition]: Define the target density for each principal component πv(x) to 

* (k ) ( )kcorrespond to f ( |x H  ) given by Eq. (14). Estimate the weights w ( )x = π (x) /  f (x)  for the v v v 

l lsample set {x : l = 1,..., N} , providing the weight set {w l: = 1,..., N} . Repeat this for each principal v 

component. 

Step 4 [sample-based approximation of target density]: Utilizing the sample/weight set 

{(xl , wv
l ) : l = 1,..., N}  from Step 3, perform a GMM fit to obtain a sample-based approximation of 

* (k ) * (k ) * (k )fv ( |x H  ) , denoted as f̂  
v ( |x H  ) . Define the final target density f̂ ( |x H  )  by Eq. (15). 

Set counter n=1. 

Step 5 [IS input definition]: Define xs to correspond to the n most important components of x based 

on the priority ranking of Step 1. 

Step 6 [candidate density definition]: Define the candidate proposal density for the joint (IST) 

c ˆ* (k )formulation as f ( )x = p(x ) f (x | H )  and for the marginal (ISM) formulation asT ~s sn 

c ˆ* (k ) cf ( )x = p(x s ) 
n

f (x | H )  where x denotes the si element of vector xs. For n=1, only ( )xMn ~ s =1 si si 
fM ni 

needs to be considered (the two densities are identical).  

Step 7 [candidate density refinement and efficiency approximation]: Consider the defensive IS 

density given by Eq. (21), with f IS
c ( )x corresponding either to fM

c ( )x  or fT
c ( )x , and investigate 

n n 

whether an additional refinement can be established by identifying an optimal defensive weight α based 

c * on Eq. (22). This process provides the final optimal densities (i) fDM ( |x α ) , denoting the refined 
n 

c c *marginal defensive density starting with fM ( )x , and (ii) fDT ( |x α ) , denoting the refined joint 
n n 

defensive density starting with fT
c ( )x , as well as their respective approximated efficiencies, given by 
n 

Eq. (20). 

Step 8 [repeat across input definitions]: if n<nx, update n=n+1 and repeat Steps 5-8. 

Step 9 [selection of best density]. Considering the efficiency of refined densities 

c * c *{ f (x | α );n =1,...,n }  and { f (x | α );n = 2,...,n }  across all repeated Steps 7, choose the final IS DM x DT xn n 
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density f c 
IS ( )x  as the one with the best approximated efficiency. This density  will be denoted herein as 

promoted-IS. 

Step 10 [robustness enhancement through defensive IS scheme]. Consider again the defensive IS  

density  f c 
DIS ( |x α)  given  by Eq.  (21), implemented for the density  f c 

IS ( )x  identified in Step 9, and 

select defensive weight αc so that the efficiency reduction of f c 
DIS ( |x α)  compared to f c 

IS ( )x  is ρ. Note

that if f c ( )x  corresponds to α*
IS <1,  then the final  f c c

DIS ( |x α )  is merely  formulated as a  further decrease  

of α c 
.  The corresponding density   fDIS ( |x αc )  will be denoted herein as robust-IS, and represents the IS 

proposal density for the next advisory  f (k +1) ( )x  . 

 

This ten-step algorithm  will be denoted as AIS-SA (adaptive importance sampling across storm  

advisories) herein. It is important to note that the computational cost of AIS-SA primarily  originates from 

the GMM fit and the dimensionality  reduction, and this cost is very  small when  compared to the cost for 

the numerical  simulations to estimate the storm  surge.  By  sharing information across the advisories, AIS-

SA requires no additional such simulations, making the overall adaptive implementation very  efficient. 

More importantly, in real-time operational setting, AIS-SA can be implemented  once statistical products 

have been delivered for a  specific advisory, while waiting the next advisory,  imposing, therefore, no 

additional operational cost, and allowing all available computational resources to  be used  for the storm  

surge simulations (to provide the desired statistical products).  

An alternative implementation for  the sample-based approximation can be established if the fit is 

performed for each of the densities appearing in the f c 
Tn

( )x  and f c 
M x in Step  s . 

n 
( )  expressions 6 eparately  

To accomplish this, the order of Steps 4  and 5 needs to be flipped, and the GMM fit in the  new Step 5  

(previous Step 4)  is established considering either the sample/weight set   {(xl
s , w

l 
v ) : l = 1,..., N}   to obtain 

approximation f̂  * )
v ( |x H( k  

s  )  or the sample/weight set  {( x l l
s  

i 
, w v ) : l =1,..., N}   to  obtain approximation  

f xˆ *  (v ( |s H  k )

i 
)  for each component of xs.  This alternative formulation involves a  larger computational burden 

as it requires a larger number of GMM distribution fits compared to the single fit required in the original  

formulation.   

For the other two IS variants, some adjustments are needed in some of the algorithmic steps. For the 

PCA-IS implementation an update is needed for Steps 3 and 4 as follows:  

Step 3  [target density definition]:  Define the target density  across the principal components to  

correspond to  f * ( |x H (k  ) )  given by   Eq. (16). Estimate the weights w( )x = f *PCA (x | H (k ) ) / f  ( k )
PCA (x)  for

the sample set {x l : l = 1,..., N} , providing  weight set {w ll : = 1,..., N} . 
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5 

Step 4 [sample-based approximation of  target density]:  Utilizing the sample/weight set 

{(xl , wl ) : l = 1,..., N}  from Step 3, perform a GMM fit to obtain the sample-based approximation of 

* (k )f̂ ( |x H  ) . 

H ( )k ( )kFor the OrO-IS, Step 2 is removed, all conditionings on are replaced by a conditioning on q , 

* (k )whereas in Steps 3 and 4, the target density across the principal components fPCA ( |x H  )  is replaced by 

* (k )the target density across outputs f ( |x q )  given by Eq. (17). 

Illustrative case studies overview 

5.1 Case study characteristics 

Three different historical storms are examined as illustrative case studies, corresponding to: hurricane 

Gustav (2008), hurricane Irene (2011), and superstorm Sandy (2012). These storms are chosen to offer a 

comprehensive demonstration examining both landfalling (Gustav and Sandy) and bypassing (Irene) 

storms, across different geographic regions, that include both the Gulf of Mexico (Gustav) and the North 

Atlantic (Irene and Sandy). For each storm, different series of NHC advisories will be utilized: (i) for 

Gustav, advisories 26-29 (in total 4 advisories) are used, corresponding to a period range roughly from 48 

hr to 24 hr before the storm makes landfall, (ii) for Sandy advisories 22-28 (in total 7 advisories) are used, 

corresponding to a period range roughly from 72 hr to 24 hr before landfall, while (iii) for Irene advisories 

26-30 (in total 5 advisories) are used, corresponding to a period range roughly from 48 hr to 24 hr before 

the storm bypasses New York and gradually starts losing its strength. The earliest advisory (with the 

smallest indexing number), corresponding to the furthest time from landfall, will be denoted by A(1) and 

each subsequent advisory will be presented with an increasing superscript number. The tracks for some of 

the advisories for all these storms are shown in Figure 6. 

According to the current NWS probabilistic framework (Gonzalez and Taylor 2018), for each advisory, 

the available information corresponds to: the storm track, DP t( )  and v t( )  for the past hurricane historyw 

t ( )k t ( )k< 0  and the storm track and v t( )  for future forecasts ³ 0 . Based on the provided DP and vw, the w 

t ( )kstorm size Rmw is estimated for the hurricane history. The current estimate for = 0 , Rmw(0), is kept 

constant for future predictions ( t ( )k ³ 0 ), representing the nominal storm size forecast. For the relationship 

among vw, DP and Rmw, results from the study (Knaff and Zehr 2007) are utilized.  

As detailed earlier, the proposed advances are independent of the underlying physical model that is 

used for the storm surge simulations (for the peak surge predictions). For the case studies examined here, a 

surrogate model of ADCIRC is chosen for this purpose. The use of a surrogate model instead of ADCIRC 

is necessitated by the extensive case studies considered and the need to estimate reference solutions for the 
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estimated surge, to validate the IS formulation. Details for the development of the surrogate models for the 

North Atlantic (used for hurricanes Irene and Sandy) and for the Louisiana region (used for hurricane 

Gustav) can be found in (Kyprioti et al. 2021b) and (Jia et al. 2016), respectively. The surrogate models 

were developed using databases of ADCIRC simulations for the two aforementioned regions of interest and 

are available by the U.S Army Corps of Engineers through their Coastal Hazards System (Nadal-Caraballo 

et al. 2020). The accuracy of the established surrogate models is very high, having a correlation coefficient 

with respect to the original database of over 98.5%, providing a very high degree of confidence for their 

use within the case studies considered here. The part of the ADCIRC grid within the domain of impact for 

these storms includes nz=1,860,021 nodes for the North Atlantic case studies and nz=1,552,341 for the New 

Orleans case studies. These numbers showcase the large dimensionality of the examined output, stressing 

the IS formulation challenges.    

Hurricane Gustav (2008) 
advisory 26 
advisory 27 
advisory 29 

Superstorm Sandy (2012) 
advisory 22 
advisory 25 
advisory 27 

Hurricane Irene (2011) 
advisory 26 
advisory 28 
advisory 30 

Figure 6. Storm tracks for the case study storms for hurricanes Irene (2011), Sandy (2012) [left column], and 
Gustav (2008) [right column]. 

5.2 Case study computational details 

Unless otherwise defined, the number of samples for the direct MC and IS implementations is chosen 

to be N=500. The efficiency reduction for the robust-IS selection is set to ρ=0.1. Five different statistics 

are considered to quantify the probabilistic performance, encompassing the typical statistics used in 

probabilistic surge forecasting (Kyprioti et al. 2021a) corresponding to: (i) the surge threshold 

( )k ( ( )k p t )corresponding to probability of exceedance Pj bj  for four different values of pt=[0.01, 0.05, 0.1, 0.2], 
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denoted herein as S pt 
[for example S ( )k ( )k p t 

0.01 corresponds to  Pj ( bj )  for pt=0.01]; (ii) the mean surge 

E zp [ (j x q|  ( )k )] ,  denoted herein as Sm. As discussed in section 2.3 these statistics lead, ultimately, to 

different definitions of the  consequence measure h ( |x q ( )k 
j ) . The statistics corresponding  to  lower pt values  

represent events with less frequent characteristics, whereas Sm  and  statistics corresponding  to higher pt  

values focus on the mean response behavior. Also even though these definitions can be combined to derive 

a formulation of a  single IS density  that could optimally  balance across all of them,  an  independent 

implementation (adaptive  IS for each  of them  separately)  will be considered  here. Unless otherwise  

specified, no preference is provided  for any  nodes, with priority weights, rj, set equal to 1 for all nodes.    

For facilitating the  validation of  the results, reference estimates are obtained  using a  large number of 

quasi-random  samples (i.e. Nr=5000) by QMC. Let {xr : r =1,..., Nr } ~ p(x)  denote this sample set. The 

reference estimation pertains to both the probabilistic integral  of Eq. (8) as  well  as the efficiency of  the  IS  

density of Eq.  (19), given, respectively, by:  

N 
( )k 1 

 H r ( )k
j å

r 

=  hj ( |x q )  (23)  
Nr l=1 

1 n z é 1 Nr
2 r (k ) p(x )

 ê  
 r ù

å r j åh j ( |x q ) c r -(H 
2 (k )

n ê ) ú
N f ( )x  j ú

 F ( )k [ (f c x )]= -1 z j=1 ë r l=1 û
n N 

 (24)  
1 z é 1 ù
å ê

r 

r å h 2 ( |x qr  (k  ) )-(H
2

 (k ) ú
n j ê j 

z j=1 ëN
j ) ú

r l=1 û 

Note that both of these equations correspond to  QMC-based estimates of the actual probabilistic quantities,  

but since the value of Nr is  very large,  they are  considered herein as the reference results. When needed to 

draw distinctions, the estimate of the efficiency  using Eq. (20)  and the N  readily available simulation  

samples will be referenced, as mentioned earlier, as efficiency  approximation  whereas the estimate using  

Eq. (24) and the large number of Nr  QMC samples will be referenced as actual  efficiency. It should be  

stressed that the quantities in Eqs. (23)  and (24) are calculated here simply to accommodate the intended  

validation, and  are not available in practical applications. This is the reason that the adaptive IS selection  

in AIS-SA is based on the efficiency approximation.  

For the PCAin-IS and PCA-IS  formulations, threshold  ψo is set to 99%,  leading to  the identification of 

number of principal components in the range of 20-50, depending on the statistic examined.  

6  Illustrative  case studies: results and discussion 
To establish a comprehensive assessment of the IS implementation, three different setups are examined,  

with increasing levels of  complexity, starting with the adaptive IS selection for a single advisory, and then  

extending to the implementation across advisories.     
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6.1 Adaptive IS selection for a single advisory 

In this section, the IS performance within each advisory is examined. This setup accommodates 

comprehensive comparisons for a variety of topics related to the IS implementation for probabilistic surge 

estimation, circumventing challenges that may arise by the fact that differences in the nominal storm 

characteristics may occur between advisories. The implementation and performance across advisories will 

be examined in the next section. Specifically, the focus here is on the potential IS benefits, the efficiency 

comparisons across the different IS variants, as well as the challenges associated with the implementation 

across different locations (different QoIs) or for different statistics of interest.  

Results are presented for advisory A(1) for all three storms as well as advisory A(4) for hurricane Gustav.  

All three IS variants are considered here, PCAin-IS (IS density of individual principal components), PCA-

IS (IS density across principal components), or OrO-IS (IS density across original outputs), whereas results 

are initially presented for IS densities considering different number of input components, n=1,…,4, 

according to the AIS-SA implementation presented in Section 4.4 [repetition of Steps 5-8], for both the 

marginal (independent IS densities for each input component) and joint IS (single IS density across all input 

components) formulations. Even though a specific n value and formulation are promoted in Step 9 of the 

algorithm, the discussion here focuses on the intermediate results. For notational simplicity, each of the 

densities will be denoted herein as Mn [for the marginal ISM formulation] or Tn [for the joint IST formulation], 

where subscript .n denotes the number of input components considered in the IS formulation. Results for T1 

are not presented, since this is identical to the M1 case. Initially, the discussion focuses on the promoted-IS 

density in Eq. (21) for the α value found in Eq. (22).  

The IS implementation is initially examined for two different statistics, the surge thresholds 

corresponding to 1% exceedance probability S0.01 and 10% exceedance probability S0.1 with results 

presented, respectively in Figures 7 and 8. Each figure presents the approximated and actual IS efficiency 

in Eqs. (20) and (24), respectively, with different marker styles and colors. Results are presented for the 

cases discussed in the previous paragraph: for each of the three IS variants (columns of figures) and for 

different formulations of the IS density (discrete cases in the x-axis). In each figure, results are presented 

for the different storms and advisories (rows of figures). 

Focusing on the overall IS efficiency first, we can observe significant improvements in accuracy, and 

therefore proportional reduction in computational burden (in most instances reduction of computational 

burden by 1.5 to 2 times can be achieved). The benefits are greater for statistics corresponding to less 

frequent events; this is showcased here by a bigger improvement for S0.01 compared to S0.1 [compare same 

variant implementation between Figures 7 and 8]. This is expected. As discussed earlier, since IS densities 

will have greater differences than p(x) for rarer events, contributing to greater potential benefits offered by 

the IS implementation. The overall degree of improvement shows significant variability across storms and 
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advisories. This degree depends on a  range of  attributes, for example on how well the actual optimal IS 

density is approximated by  the proposed  GMM formulation, and  on  how the provided information allows 

for the accurate identification of this optimal IS, with the most important being, the required degree of 

compromise across the different surge locations for selecting the IS density.  This will be, evidently,  case 

dependent.  

Figure 7.  Approximated and actual IS efficiency for a specific advisory for different IS variants (columns of 
 

   
figure) and  different  formulations for the IS  density. Results  are presented for different  storms and advisories (rows 

of figure) and correspond to the S0.01 statistic. Robust IS formulation  is not considered in these results.  
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Figure 8.  Approximated and actual IS efficiency for a specific advisory for  different IS  variants (columns of  

figure) and  different  formulations for the IS  density. Results  are presented for different  storms and advisories (rows 
of figure) and correspond to the S0.1 statistic.  Robust IS formulation  is not considered in these results.   
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Examining, next, the differences in the efficiency  as the number of IS input  variables increases (for 

both the marginal Mn  or joint formulations Tn), results show variability  across the different advisories, with 

n=4 emerging consistently, as the  preferable implementation.  To  better frame  the influence of  the number 

of IS input variables, the GSA results (performed in the first step of the adaptive IS formulation) need to be  

considered. The GSA for these advisories identified consistently Δscross  as the most influential input, with  

Δvw  and ΔRmw  following with similar values of the first order Sobol’ indices, and Δsalong, having smaller 

importance. For hurricane  Irene that has bypassing characteristics,  Δsalong  is identified to have very small  

importance, agreeing with the trends reported in (Jung et al. 2022). It  is therefore no surprise that no 

difference, and perhaps some efficiency loss, is reported when moving from  n=3 to n=4 for Irene (including  

Δsalong  in the IS  formulation). Another interesting trend is the larger relative efficiency  improvement when  
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moving from n=1 to n=2 (including Δvw or ΔRmw in the IS formulation), as opposed to when moving from 

n=0 (no IS implementation) to n=1 (including only Δscross in the IS formulation). Despite Δscross being the 

dominant input with respect to global sensitivity characteristics, it is not the most advantageous to include 

in the IS formulation. The reason for it is easily understood if one looks at the results in Figures 4 and 5 

earlier. For Δscross the optimal IS characteristics exhibit significant higher variability within the geographic 

domain, demonstrating clear competing preferences (some nodes promote values substantially less than 0 

and some other nodes values substantially larger than 0). Even though Δscross is more influential as 

individual input (higher GSA aggregated importance indicators), the competing optimal IS characteristics 

for it and the need, as discussed earlier, to establish a compromise across them, reduce its relative influence 

within the IS formulation, allowing input variables with smaller variability with respect to the IS 

characteristics (see Figures 4 and 5) to emerge as more advantageous options. If a single QoI was examined, 

then the advantages associated with the IS formulation for different input variables would be in complete 

agreement with the GSA results. These trends can be, additionally, leveraged to understand the smaller 

efficiency improvement offered by IS for hurricane Gustav: the optimal IS characteristics for this hurricane 

for the influential parameters ΔRmw and Δsalong exhibit significant larger variability within the domain of 

interest, indicating IS with greater degree of competing preferences, something that ultimately reduced the 

efficiency for the promoted, compromising, IS solution. 

Comparing across the IS variants (different columns in the figures), results show that all yield similar 

performance with the PCA-based (PCAin-IS, PCA-IS) outperforming the original output based OrO-IS, and 

the IS density approximation considering individual principal components PCAin-IS outperforming IS 

density across principal components PCA-IS. This shows that the proposed dimensionality reduction 

(through PCA) accommodates improved efficiency, allowing IS to better leverage the available limited 

information for the adaptive selection of the IS proposal densities. The superiority of PCAin-IS over PCA-

IS is also expected, as discussed in Section 4.2, and the improvements margins, which for some cases 

(meaning advisories or storms) are not insignificant, justify its use despite the higher computational 

complexity (as also detailed in Section 4.2). Overall, this discussion reveals a preference in terms of both 

efficiency and robustness for PCAin-IS, whereas discussion in this and the previous paragraph demonstrate 

the benefits of the proposed adaptive implementation, examining different choices and promoting the one 

with the highest projected efficiency. 

To examine some additional trends, Figures 9 and 10 replicate Figure 8, but each one investigates a 

different feature of the IS formulation. Figure 9 presents results using a smaller  number of  N=100 

simulations, with the objective to examine the impact of the amount of available information on the adaptive 

IS selection. Figure 10 introduces priority weights, rj, in the implementation, to examine the robustness of 

the AIS-SA when certain QoIs appear to be more influential. In this case, the priority weights are chosen 
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Figure 9.  Approximated and actual IS efficiency for a specific advisory for  different IS  variants (columns of  
figure) and  different  formulations for the IS  density. Results  are presented for different  storms and advisories (rows 

of figure) and correspond to the S0.1 statistic,  similar to Figure 8, but for  N=100  number of simulations.  
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equal to the surge variance for each location (approximated through the MC results), providing higher  

priority  to locations that exhibit higher response variability.  For the  results in Figure 10, the default value 

of N=500 is used. 

Examining the behavior of the marginal ISM  and joint IST  density  formulations across Figures 7, 8 and 

9 one immediately  observes similar performance, with the marginal ISM  implementation exhibiting some  

slightly  better average performance, even though in some instances  IST  might yield higher efficiency. The  

better performance for the ISM  family  of densities is more evident when examining the actual efficiency  

[given by  Eq.  (24)]  (more on discrepancies to efficiency approximation [given by  Eq. (20)]  later) for the 

implementation that has a  smaller  number of simulations (Figure 9), something  that translates  to a limited  
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Figure 10. Approximated and actual  IS efficiency  for  a specific advisory  for different IS  variants (columns of  
figure) and  different  formulations for the IS  density. Results  are presented for different  storms and advisories (rows 
of figure) and correspond to the S0.1 statistic,  similar to Figure 8, but for priority weights rj set equal to the variance 

of each location. 
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amount of information for selecting the adaptive IS. This is expected, and is the motivation for introducing  

the ISM  formulation, since challenges are anticipated when increasing the number of features of the density 

calibrated while using such limited information. This is manifested  as some (slight) loss of robustness for 

the joint  family of  densities, especially  when the number of input variables n  considered in  the IS 

implementation is larger.  With respect to the influence of this  number, as also  discussed earlier, results  

show variability  across the different examined advisories, with  n=4  emerging consistently, as the preferable 

implementation, but  with a  relative reduction of efficiency  when  using smaller number of simulations 

N=100, occurring for the reasons explained just above.   
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Examining the trends in Figures 8  and 10 demonstrates that the overall degree of efficiency 

improvement also depends on the exact selection of the priority  weights as well as the required degree of  

compromise across the different surge locations for selecting the IS density;  for  example, if the chosen rj  

prioritize nodes with similar optimal IS density  characteristics (for example same  mean for the IS density), 

then the average IS benefits will increase. This discussion offers preliminary  guidance that IS can provide  

important benefits within the application examined here, though  the degree of improvement in  

computational efficiency  will depend on details of the storm  surge variability within the geographic domain  

of interest, and the statistics examined.  Of course the exact IS benefits can be evaluated only when an  

implementation across the advisories is examined, something discussed in the next section.  

Comparing, finally, the results for the actual and approximated  efficiency  [given by  Eqs. (24) and (20)  

respectively], good overall agreement is reported. This agreement is better for the PCAin-IS and PCA-IS  

variants, demonstrating, again, a preference for IS formulation  utilizing a dimensionality reduction  

approach. The discrepancies are significantly  bigger,  as expected, for (i) the case corresponding to less 

frequent event [compare the same  variant  implementation between  Figures 7  and 8], since a smaller amount  

of information is extracted from  the same amount of  resources (same  number of available simulations), and  

(ii) for the case with smaller N [compare the same variant implementation between Figures 8  and 9], owing 

to the limited information utilized in this  case to obtain the efficiency approximation. Nevertheless, the 

adaptive IS selection (comparing across all Mn  and Tn  cases) based on the efficiency approximation  yields 

consistent results with the choices that would be made if the actual efficiency was known. This is the most 

important feature, as the efficiency approximation is directly leveraged within AIS-SA to select the best IS  

candidates. 

Next, the IS  efficiency  across the different statistics is examined. In this  case, the IS formulation is 

based on one statistic [for example surge thresholds corresponding to 10% exceedance probability  S0.1],  

while the efficiency  is evaluated using a different statistic [for example surge thresholds corresponding to  

1% exceedance probability S0.01].  This means that different consequence measures h ( |  ( )k 
j x q )  are used for: 

(i) the AIS-SA algorithm  in Section 4.4.;  and (ii) the efficiency estimation according to Eq. (24). 

Comparison against the case that the same consequence measure is used across these two steps quantifies  

the efficiency loss established by using a  different statistic in the IS selection. Figures 11  and  12  show  the 

actual efficiency  calculated using Eq. (24) with Nr=5000 quasi-random  samples for each of the examined 

statistics (curves in the figures) for the IS density  chosen based on every  other one (x-axis discrete cases). 

Results correspond to the optimal density  promoted through the AIS-SA algorithm  and for the preferred  

variant, PCAin-IS, instead of the comprehensive cases  reported in the earlier figures in this section. Figure  

11 presents results for the  promoted-IS density (Step 9 of  the  algorithm) and  Figure  12 for the  robust-IS  
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Figure 12. Efficiency for various statistics of interest (different curves)  for  different  IS  density selections 

(represented  in the x-axis in each plot). Results correspond to the robust-IS  density and the PCAin-IS variant.   
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Figure 11. Efficiency for various statistics of interest (different curves)  for  different  IS  density selections 
(represented  in the x-axis in each plot). Results correspond to the promoted-IS density and the  PCAin-IS variant.   
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density (Step 10 of the algorithm). In these figures, for each different curve, the highest efficiency  is 

anticipated for IS selected based on the same statistic  (same x-axis  case), whereas the departure from  this  

efficiency  for the other implementations quantifies the loss when IS is chosen based on different criteria.  

Note that since decisions made within AIS-SA  are based on the efficiency approximation  but all  validations 

utilize the actual efficiency  some small deviations from  the trend of having the highest efficiency  

corresponding to the same x-axis case are reasonable.  
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Results across all these figures showcase significant dependence of the IS efficiency on the chosen 

statistic (consequence measure). This is manifested as a significant dispersion of the efficiency across the 

different statistics of interest for a specific IS selection (specific case in the x-axis of Figures 11 and 12). 

Statistics that correspond to less frequent events, exhibit greater benefits (higher potential efficiencies) from 

the IS formulation, further validating trends identified in Figures 8 and 9 and discussions in Section 3, but 

this comes with a stronger performance dependence on the statistic used for the IS selection (bigger 

variability across the curve). The opposite is also true with respect to the effect across other statistics of the 

IS density chosen based on less frequent statistics; the spread is larger when the IS is chosen based on less 

frequent events [S0.01 case in the x-axis], leading for some other statistics even to loss of efficiency compared 

to the direct MC implementation [efficiency values less than 0]. Overall the IS selection using the 

intermediate statistic S0.1 seems to perform well across all the statistic examined here, which, recall, 

encompass the typical statistics of interest in probabilistic surge forecasting applications. Moreover, the 

implementation of the robust-IS seems to greatly improve the performance across the entire range of 

statistics examined here: comparing Figure 12 to 11 one can observe a significant reduction in the dispersion 

of the efficiency (translating to an improvement in robustness) with a moderate only (ρ=0.1 in this case) 

reduction of efficiency for the targeted statistic. These discussions show that when different statistics are 

of interest, careful consideration of the one to base the IS selection is needed. The use of some intermediate 

statistical quantity, like the S0.1 examined here, should be preferred, while the defensive IS formulation does 

provide additional robustness even in this context. The latter has an evident dependence on ρ, but this topic 

will be discussed further in the next section. Of course, as discussed earlier, the different statistics can be 

augmented in a single QoI definition, across not only multiple locations but also across different statistics 

definitions to better inform the AIS-SA formulation. In this case careful selection of the priority weights 

might be needed to better balance decisions across the different statistics of interest.  

6.2 IS formulation across advisories 

With the IS characteristics for a single advisory examined in detail, the validation moves on now to the 

proposed implementation across advisories. In this case, the identified as preferred variant PCAin-IS is only 

considered, whereas results are reported both for the promoted-IS (Step 9 of the AIS-SA algorithm) and the 

robust-IS densities (Step 10 of the AIS-SA algorithm). To evaluate the efficiency and robustness of the 

AIS-SA algorithm with respect to the information sharing across advisories, another implementation is 

examined, corresponding to the optimal IS selection for the current advisory.  This allows the efficiency  

accomplished by choosing IS densities across subsequent advisories to be compared to the best efficiency 

that would be achieved if one could explicitly choose and implement the IS density for the present advisory. 

( )k ( )kFor the kth advisory the first type of efficiency corresponds to F [ f (x)]  , i.e. using as proposal density 
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the one coming from  the previous  advisory,  whereas the second type of  efficiency  corresponds to  

F ( )k [ f ( k +1) ( x)] , i.e. u sing  as proposal density the  optimal density  identified  at the  present advisory. These  

two cases will be distinguished in the figures using  terminology previous and  current, with previous  

corresponding  to the AIS-SA formal implementation (across advisories) and current to the best efficiency. 

Results in Figures 13 and 14 are reported for each of the three  different storms for both the promoted-IS  

density  and the robust-IS  density. Figure 13 presents results for  the S0.01  statistic and Figure 14 for the S0.1  

statistic. Figure 15 examines a  similar implementation as Figure 14 but in this case for N=100, to investigate 

the impact of the number of simulations on the adaptive IS formulation across advisories. Finally, Figure  

16  presents results for the performance with respect to  the  S0.01  statistic (similar to Figure 13) with IS density 

chosen based  on the S0.1  statistic  (i.e. the exact densities utilized in Figure 14). This ultimately  replicates 

the scenarios evaluated in  Figures 11 and 12,  but  in  this case with respect to the implementation across  

advisories. 
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Figure 14. Efficiency of AIS-SA across advisories for the S0.1 statistic  for the three case study storms (columns 

of figure) for both the promoted-IS density and the robust-IS density. Results correspond to the  PCAin-IS  variant.  In  
each case  the efficiency of the  density chosen based on the current advisory is also  shown.  
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Figure 13. Efficiency of AIS-SA across advisories for the S0.01 statistic  for the three case  study storms (columns 
of figure) for both the promoted-IS density and the robust-IS density. Results correspond to the  PCAin-IS  variant.  In  

each case  the efficiency of the  density chosen based on the current advisory is also  shown. 

Results clearly  show that the proposed implementation, sharing information across advisories, works 

well, since the gap in performance between the previous  and current  IS implementations is small: the 

density  chosen  based on the results from  the previous advisory  as well as the density  that would have been  

chosen if the results from  the current advisory  were known. Note  that the fact  that in  some (very few)  
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instances the previous IS implementation outperforms the current  IS  implementation, is not  something that  

should be anticipated (the formulation using current information should  improve over the one using past  

information) but  it can be explained:  the selection of the IS densities is  based on the efficiency 

approximation  [calculated  with Eq. (20) using readily available small number  of simulations],  but the  

validation here is performed with respect to the actual efficiency [calculated with Eq. (24) using a large 

number of simulations].  As also discussed for the trends reported in Figures  11 and 12, there can be 

instances that  the efficiency  approximation leads to (slightly) sub-optimal decisions when evaluated against 

the actual efficiency.  

Figure 15. Efficiency of AIS-SA across advisories for the S0.1 statistic similar to  Figure 14, but for  N=100 
number of simulations,  for  the three case study storms (columns of figure) for both  the promoted-IS density and the  

robust-IS  density. Results correspond to the  PCAin-IS variant. In each case the efficiency of the density chosen based 
on the current  advisory is  also shown.  
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Figure 16. Efficiency of AIS-SA across advisories for the S0.01 statistic similar to Figure 13,  but for IS density 
chosen based on the  S0.1 statistic,  for the three  case study storms (columns of figure) for both  the promoted-IS  

density and the  robust-IS density. Results correspond to the  PCAin-IS variant. In each case the efficiency (for the 
S0.01 statistic) of the density chosen based on the current advisory (for the S0.1 statistic)  is also shown.   

Investigating  further the trends in Figures 13-16,  the implementation of  the  defensive IS strategy  

(robust-IS  case) does not seem  to be warranted from  the perspective of sharing information across 

advisories, since as discussed above, the formulation based on  the  previous advisory information is  very  

close to the optimal  IS selection, indicating no loss of  robustness by  the fact that advisories change. It is 

warranted though to provide  robustness against making selections using limited  information for deciding 

on the IS densities (N=100), as the results in Figure 15 clearly  indicate, especially  for hurricane Gustav.  

The reason why  this is more  clearly  evident for hurricane Gustav is the smaller relative efficiency of the IS 
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implementation for this storm (see also discussion in previous section), creating greater impact on any 

efficiency reduction. It is important to additionally note that here the effects from the use of smaller N are 

greater compared to the identical case investigated in Section 6.1 (Figure 9). These differences originate 

from the vulnerabilities associated with the use of the efficiency approximation in the AIS-SA algorithm 

and the fact that, in the implementation examined here, this approximation is estimated by using the IS 

density from the previous advisory. As already discussed in Section 6.1 (and illustrated in Figure 9), the 

differences between the approximated and actual efficiency are larger when the number of simulations 

utilized to calculate the former is small. When this estimation is based on proposal densities formulated on 

past information (previous advisory) these differences can become larger and create vulnerabilities for the 

decisions made according to them, as the results in Figure 15 clearly indicate. The robust-IS case addresses 

all these vulnerabilities, indicating the importance of using the robust-IS formulation when the number of 

simulations utilized for the proposal density selection is small. Even if N is large, since maintaining a level 

of robustness in the AIS-SA formulation is important, one can argue that trends here indicate that simply a 

smaller value of ρ should be utilized. This will reduce the gap between the robust-IS and the promoted-IS 

formulations, improving efficiency while still infusing a sufficient level of robustness, since the previous 

discussions and comparisons clearly demonstrated that as long as N is large, the sharing of information 

across advisories does not create significant vulnerabilities in the adaptive IS selection (indicating that. 

smaller robustness level is sufficient). Unfortunately, an adaptive way to choose ρ cannot be established 

since decisions are made based on the efficiency approximation (no other information available for AIS-

SA) and the current advisory. The detailed exploration of an appropriate value of ρ requires estimation of 

the actual efficiency for the next advisory. 

The results also verify the trends examined in more detail in section 6.1, with efficiency being greater 

for the S0.01 statistic or the robust implementation providing benefits when the IS is based on a different 

statistic (compare the results in Figures 16 and Figures 11/12). 

6.3 Integration within QMC implementation 

It was shown in (Kyprioti et al. 2021a) that QMC offers an attractive formulation for probabilistic surge 

estimation, establishing deterministic solutions for a given N quasi-random samples, which is a preferred 

feature based on the existing NWS computational workflow (Taylor and Glahn 2008; Gonzalez and Taylor 

2018), while improving the numerical accuracy. The AIS-SA can be integrated within such a QMC 

formulation if the IS selection is restricted to marginal distributions (ISM). Note that the latter restriction is 

not necessary; the class of joint IS densities IST can in principle be considered, but in this case, some 

transformation to independent distributions will be needed to facilitate the QMC sampling (Lemieux 2009). 

The use of the marginalized ISM family of densities promotes a seamless extension while, equally 

importantly, the ISM formulation is comparable to or even slightly preferred over the IST formulation choice 
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as the results in Section 6.1 indicate. The extension is accommodated by  using  QMC sampling instead of 

random  MC sampling to obtain the samples from  f ( )k ( )x . All other aspects of the algorithm  remain the 

same. Note that a formal adoption of IS  within a  QMC setting may  be also considered  (Spanier and Maize 

1994),  though the formulation requires significant modifications of  the existing  computational workflow. 

For this reason, the simpler direct integration of AIS-SA within QMC is promoted here.   

The validation is performed  by examining the bias of the AIS-SA  (utilizing QMC) or direct QMC  

predictions, given by  Eq.  (9) (note that for direct QMC f ( )k ( )x = p(x)  in this  equation),  to  the reference 

results given by  Eq. (23). The number of simulations for the AIS-SA implementation is greatly  reduced to 

N=50, to test  how the proposed integration of two accuracy  improvement techniques (IS and  QMC) can  

help in further reducing the computational burden.  For the QMC sampling, Sobol’ low discrepancy  

sequences are used.  AIS-SA with QMC is compared to QMC using N, 1.5N, or  2N  samples. Similar to 

(Kyprioti et al. 2021a) the average accuracy is expressed using the normalized mean error, given by:   

1 n

å
z

 H ( )k 
j - Ĥ ( )k

n j

   NME ( )k = z j =1

z
    

1 n
(25)

å H ( )k

n j
z j =1 

Figure 17. Accuracy  (NME)  of AIS-SA with QMC across advisories for the S0.01 statistic  (top row) and  the S0.1 

statistic (bottom  row) for the three case study storms (columns of figure) for both the  promoted-IS density and  the 
robust-IS  density. Results correspond to the  PCAin-IS variant and  IS  density chosen based on the  S0.1 statistic. In  

each case  the accuracy of direct QMC using N, 1.5N  or  2N samples is also reported.  

Results are presented in Figure 17 for both the promoted-IS  density  and the robust-IS  density  for  

performance assessed using either the S0.1  statistic or the S0. 01  statistic, but with IS density  chosen (in both 

instances) according to the S0.1 statistic. This setting is chosen  to better evaluate the implementation that  
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was promoted earlier for practical applications, using S0.1 to decide on the IS characteristics even when 

considering an implementation to different statistics. Results show that AIS-SA can be seamlessly couched 

within a QMC formulation and provide additional computational savings that vary from storm to storm, but 

may reach a two-fold reduction: AIS-SA in all instances outperforms direct QMC and accomplishes similar 

accuracy to QMC using 1.5 or even 2 times larger storm ensembles. Considering that QMC was shown 

(Kyprioti et al. 2021a) to provide consistently at least a threefold reduction compared to the current practice 

of using factorial sampling (Gonzalez and Taylor 2018), the advantages of combining QMC and AIS-SA 

are clearly evident. Moreover, robust-IS and promoted-IS implementations show consistently similar 

accuracy, with a much smaller gap when compared to the comparisons in section 6.2. This indicates that 

within a QMC implementation, the robust-IS formulation may infuse robustness with only a small 

efficiency reduction. 

Conclusions 
This paper examined the implementation of importance sampling (IS) for the improvement of 

computational efficiency in real-time probabilistic surge estimation. The IS is established by sharing 

information across the different advisories, using the readily available simulation results from the current 

advisory to adaptively select a proposal density within a MC estimation setting, to use in the next advisory. 

The objective is to reduce the number of simulations needed in the next advisory to offer statistical estimates 

with the same accuracy. A sample-based, adaptive IS formulation was established in this paper, termed 

AIS-SA, to achieve this objective. The sample-based approach adopted for AIS-SA can be applied even 

when the number of available simulations, and consequently the information for the proposal density 

selection, is limited, as this is the setting which is expected in typical practical applications. A parametric 

density implementation was proposed based on Gaussian Mixture Models (GMMs), whereas a workflow 

that considers different candidate proposal densities (with different number of inputs and corresponding to 

either the joint or marginal distributions across these inputs), and selects the most favorable one according 

to its anticipated efficiency was established. The fact that the probabilistic estimation pertains to the storm 

surge for multiple locations within the geographic domain of storm impact poses a significant challenge, 

since a single proposal density needs to be promoted across all these quantities of interest (QoIs). Three 

different variants were examined to address this challenge, the first two considering a dimensionality 

reduction through principal component analysis (PCA) and considering a separate density for each principal 

component (PCAin-IS) or a single density across all components (PCA-IS), and the third one selecting a 

single density across all original outputs (OrO-IS). Finally, for establishing robustness to accommodate the 

implementation across the large number of QoIs using limited information (limited number of simulations) 
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and, more importantly, the fact that the IS density is chosen based on the  current advisory but  is 

implemented in the next one, a defensive IS scheme (termed robust IS) was introduced. 

The efficacy  of the proposed computational workflow was established by considering three different 

storms with diverse characteristics. Main  conclusions from  the case study are the following:  

  The most important conclusion is that information sharing across the storm advisories  can  

accommodate computational benefits (improvement in accuracy with same computational budget) 

in real-time probabilistic surge estimation. The differences between subsequent advisories  are, 

typically, not  significant enough to  lead to erroneous decisions. The adaptive IS implementation 

examined in this paper is one approach to leverage such information. Independent of the adopted  

approach, the  results in the case studies provide tangible proof that such information should be 

utilized and can improve the efficiency  of existing computational workflows (Taylor and Glahn  

2008; Gonzalez and Taylor 2018).  

  AIS-SA implementation yields satisfactory  improvements in computational efficiency  (in most  

instances reduction of computational burden by  1.5  to  2  times can be achieved), though it faces  

challenges in the fact that the different QoIs within the geographic domain of storm  impact yield 

optimal choices for IS densities with competing features. Having to choose a proposal density that  

balances across all of them reduces the AIS-SA efficiency. 

  The promoted IS variant is PCAin-IS, establishing better efficiency  and robustness by  leveraging 

the dimensionality  reduction (for robustness) and versatility  of selecting separate IS densities for 

each principal component (for efficiency).   

  The implementation across advisories has  only a small impact on  the AIS-SA efficiency, with IS 

densities based on the previous advisory  having only  a  small deviation from  the performance of the 

IS densities that could be chosen if simulation results from  the current advisory  were known.   

  In the case studies examined here, the additional robustness established through  the defensive-IS 

scheme is critical when the available information for formulating the IS densities across advisories 

is limited (small number of simulations). Even when adequate information is available, the 

recommendation is to keep utilizing a defensive strategy, though with  a  reduced threshold ρ for the  

efficiency reduction compared to the ρ=0.1 used in this  study.   

  The benefits from  the IS implementation are larger for statistics that correspond to  infrequent events 

(surge thresholds corresponding to 1% rather than 10% exceedance probability).  

  When different statistics are calculated within the  probabilistic surge estimation, the IS  should  be  

based on statistics with intermediate characteristics  in terms of frequency of  occurrence. The 

thresholds corresponding to  10%  exceedance probabilities were shown in this study  to provide  

good performance across a range of statistical products of interest.   
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  Comparison between marginal and joint candidate IS densities showed small  differences.  The  

former implementation can more easily  support applications with  reduced amount of information 

(limited simulations), and also can be more easily  integrated within a  Quasi-Monte Carlo (QMC) 

setting, and thus it is the recommended formulation.  

  The integration of  AIS-SA within a  QMC implementation provides additional computational 

savings that vary from  storm  to storm, but may reach a two-fold reduction.  
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Appendix A: Review  of PCA implementation   

Define the  observation matrix H ( )k , with lth column corresponding  to the central observations, 

obtained by  subtracting from  the elements of the  lth  column  H ( )k  of their mean value, given  by  Eq.  (9).  

Then, define  the weighted observations H ( )k 
r = diag( φ )H (k )diag( r )  (Greenacre 1984),  where 

diag( φ)  corresponds to diagonal  matrix with elements { φ(xl );l = 1,..., N}  across its diagonal, and 

diag( r )  to a diagonal  matrix with r  across its diagonal. Consider, now, the eigenvalue problem  for the 

weighted covariance matrix  [H ( )k ]T ( )k
r H r . The solution of this eigenvalue problem  provides the vector of 

latent outputs (principal components), with the vth latent output denoted as yv. The corresponding  

eigenvalue λv represents the portion of the total variance of the weighted original data H ( )k
r  that can be 

explained by  y Î n
v, while the eigenvector  P z

v    facilitates the mapping to the latent space. Note that the 

weighting by  r  ultimately  provides priority rj to the variance of each output when constructing the 

weighted covariance  [H ( )k ] T H ( )k
r r  for the PCA, whereas the weighting by  φ adjusts this covariance to 

refer to the original probability  model p(x) (Greenacre 1984; Jolliffe 2002). To accommodate a larger  

dimensionality  reduction only  the principal components corresponding to the nv largest eigenvalues are  

retained, with nv chosen such that the ratio  

å n v

 ψ = n=1 
λv

  (A.1)
å 

min(n Nz , -1) 

n=1 
λv

is greater than  some  threshold ψo (for example 99%). PCA ultimately  maximizes the variance in  the  original  

data that has been preserved when considering only nv components.  The observation matrix for  the latent 

outputs for the N available simulations  can be obtained as Y ( )k = H ( )k
r P , where the projection matrix  

P Î n nz´ v  is the matrix with vth column corresponding to eigenvector Pv . 
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